
Software Connectors and Refinement in Family
Architectures

Alexander Egyed Nikunj Mehta ����������	�
�	�

{aegyed, mehta, neno}@sunset.usc.edu

Department of Computer Science
University of Southern California

Los Angeles, CA 90089-0781, USA

Abstract. Product families promote reuse of software artifacts such as
architectures, designs and implementations. Product family architectures are
difficult to create due to the need to support variations. Traditional approaches
emphasize the identification and description of generic components, which
makes it difficult to support variations among products. This paper presents an
approach to modeling family architectures using generic software connectors
that provide bounded ambiguity and support flexible product families. The
paper also proposes an approach for transforming a family architecture to a
product design through a four-way refinement and evolution process.

1 Introduction

Large, complex systems are often developed in the context of product families1.
This enables developers to maximize reuse, accelerate the development process while
reducing costs, and deliver products that are generally more reliable. Reuse across
product families occurs in terms of architecture, design and implementation.
Architectural idioms identify the kinds of building blocks that may be used to
compose a system and specify the constraints on the way the composition is done. An
explicit focus on common architectural idioms has the potential to fundamentally
transform the nature of software development, as component integration replaces
implementation as the predominant development activity. The promise of software
architectures is that better software systems can be built in this manner more quickly
by modeling their important aspects throughout, and especially early in the
development. Coupling the benefits of product family-based and architecture-based
development has been recognized as an area with a great potential payoff, as
evidenced by a growing number of conferences, workshops, and symposia that focus
on this subject [2, 3, 4, 8, 12].

1 In this paper, we use the following phrases interchangeably: families, application

families, product families, product lines, and domain-specific software.

Published in the Proceedings of 3rd International Workshop on Development
and Evolution of Software Architectures for Product Families (IWSAPF), Las

Palmas de Gran Canaria, Spain, March 2000

The existing body of research in the area of software architectures for product
families is characterized by two major foci:

1. specification of generic, product family architectures (also referred to as

reference architectures) and their instantiation into application architectures (e.g.,
[11]); and

2. identification and integration of reusable components that comprise different
members of a product family (e.g., [5]).

In this paper, we focus on two additional issues that have not been addressed by

existing approaches and that are useful complements to those identified above:

1. the role of software connectors in specifying and ensuring the extra-functional
properties of both a product family and individual applications within the family;
and

2. refinement of an instantiated product architecture into a design and, eventually,
an implementation.

The role of connectors in software architectures is to isolate all communication,

coordination, and mediation [10]. Connectors do not generally provide domain-
specific functionality, but rather enable and streamline interactions among the
functional elements (components). Thus, our hypothesis is that certain varying
properties of applications within a family (e.g., deployment profile, concurrency,
interoperability platform, performance, reliability, security, etc.) can be isolated
within connectors. Also, certain types of connectors may occur regularly within a
family. Our on-going work on classifying software connectors will serve as a vehicle
for exploring these issues.

To enable the refinement of an architecture into its implementation, we leverage
our work on transforming architecture-level constructs (specified in an architecture
description language, or ADL [9]), into design-level constructs (specified in the
Unified Modeling Language, or UML [6]), and enabling the refinement of the
resulting high-level design in a property-preserving manner [1, 7]. We introduce the
notion of product family design, analogous at the design level to a product family
architecture. A product family design captures recurring design patterns across
components in a family. Another hypothesis is that both product family designs and
product architectures are needed to enable effective refinement.

The paper is organized as follows. Section 2 identifies the relationships between
products and families, and between architectures and designs. Section 3 outlines the
role of software connectors in family architectures. Instantiation of a product family
architecture and refinement of the resulting product architecture into its
implementation is discussed in more detail in Section 4. Section 5 presents an
example illustrating the approach. Conclusions and a discussion of open issues round
out the paper.

2 Relationship of Products and Families

Software architectures can be described using components, connectors and
configurations [9]. Components are units of data store or computation whereas,
connectors model the interactions among components. Architectural description
identifies the obligations and freedoms of a software system built to that architecture.
Obligations allow a high level analysis of system properties while the freedoms allow
developers to design and implement the system according to the characteristics and
constraints of an underlying infrastructure. Since a product family consists of
products with commonalities and differences, it is useful to capture these aspects of
the individual products in family architecture. Moreover, use of the same architectural
elements to describe family architectures and individual product architectures aids in
keeping these artifacts consistent and simplifies understanding.

A family architecture provides generic information common to all the products of
the family. This common information may include features present in all systems or a
list of possible alternatives that products exhibit. It is easy to represent family
architectures in terms of the similarities alone. However, in order to support variations
in the individual products, a family architecture needs to describe the architectural
elements with a certain amount of ambiguity. The product architecture, on the other
hand, identifies specific architectural choices for a single product and thus can be
considered as an instantiation of the family architecture. The product architecture is
less ambiguous since all architectural elements are already chosen and specified for
the sake of completeness. Proceeding in another direction, the family architecture can
also be refined to create a set of more detailed family designs that can be used in
individual products to obtain the recurring functional and extra-functional properties.

Figure 1 depicts a high-level framework we propose for architectural modeling of
product families and their improved refinement and evolution. The white boxes and
arrows in the figure denote the traditional way of instantiating product architectures
from family architectures, followed by the refinement of product architectures into
their designs (and subsequent implementations). To complement this traditional
approach, we introduce the concept of family design. A family design contains

refinement

instantiation
Product

Architecture

refinement

instantiation
Product
Design

Family
Design

Family
Architecture

Figure 1. Design refinement and instantiation using product architecture

and family design

design-related information about a product family that the architecture did not (or
could not) specify. For instance, a family design could contain different design
interpretations of architectural elements (e.g., in the form of design patterns). Merging
the product architecture information with family design information can then lead to a
product design. Therefore, the product architecture defines at a high level what needs
to be designed and the family design provides information on how to design it. This
four-way relationship between architecture, design, family, and product implies that
there are at least two alternate but complementary paths of creating designs for the
products of a given family.

3 Software Connectors in Family Architecture

Family architectures capture the essential properties and relations of the product
family. They describe structural and behavioral freedom and model the functional and
extra-functional aspects of a family. Behavioral freedom and functional aspects of the
product family are typically captured in components. Our approach also supports the
description and analysis of extra-functional properties, coupled with the identification
of the structural freedoms through the use of semantically rich connectors.

As discussed above, family architectures need to describe commonalities as well
as variations among family members. Commonalities can be captured through
elements that are mandatory to all products. The real difficulty lies in modeling
variations that have to be supported at the level of a product family. Various
approaches have been proposed to describe family architectures including the use of
styles, parameters, constraints and service provisioning. However, as discussed in
[11], none of these techniques alone adequately addresses the problem of supporting
variations in the product family. There is clearly a need for defining family
architectures with a certain degree of bounded ambiguity in order to support product
variations.

Consider the case of a customer service product family that needs to support two
product domains, retail banking and telephony. These products require variations in
terms of the underlying information, as well as in the interaction of the architectural
components. The banking application requires online transactions, whereas the
telephony product requires a batch update. A useful family architecture would be able
to support the description of both kinds of products.

Software architecture captures the essential structural and behavioral information
in the form of components and connectors. Family architectures are useful because
they lead to better structured reuse and also because the bulk of the architectural
analysis can be performed at the level of an entire family. There is a tradeoff between
vagueness of description and the scope of applicability when it comes to specifying
the architecture in product families. At the level of a product family, components tend
to be vaguely described because family architectures need to support a variety of
product features. This vagueness about components reduces our ability to reason
about the family architecture. On the other hand, in the product architecture,
components are described more precisely [13]. This tradeoff gives rise to reduced

analyzability at the family architecture level and reduced flexibility of the concrete
products.

Current techniques for representing components in family architectures, however,
tend to be inflexible. Many reuse techniques depend on the availability of
interchangeable components that can lead to a component marketplace. However,
experience shows that such components can only be achieved through considerable
standardization efforts. Standardization tends to be a long process in which decisions
are often made at a corporate level rather than industry-wide level. Component
centered reuse therefore tends to take longer to adapt and is applicable only to niche
domains. On the other hand, the software industry has very quickly embraced
component integration frameworks such as DCE RPC [14], COM [15], CORBA[16]
and Enterprise Java Beans [17]. This indicates that the industry is more amenable to
accepting standards of integrating components than to standards of defining
components. We therefore focus our research on the role of software connectors in
family architectures.

Software connectors describe the interactions among architectural components
and support communication, coordination, conversion and facilitation needs of
components [18]. Connectors can be used to describe interactions among components
in family architectures. Furthermore, many extra functional properties of a system can
be attributed to semantically rich connector mechanisms such as events, distributors
and arbitrators. Since connectors can be applied across problem domains, they have a
high potential for reusability. Connectors also significantly affect global system
properties such as availability, throughput, security and scalability. Various
architectural-styles motivated by software connectors have been studied, e.g. pipe and
filter [19], real-time data feeds [20], event-driven architecture [21], message-based
style [22], middleware-induced styles [23], and push-based systems [11].
Architectural styles are an important mechanism for enabling reuse in family
architectures [11, 24], indicating that software connectors have a major role to play in
enabling architecture-based reuse.

Connectors provide bounded ambiguity that is necessary for supporting variations
in family architectures. In order to effectively exploit that ambiguity we have used a
taxonomy view of software connectors that describes the connector types, dimensions
and their possible values (see Figure 2 for an extract). The ambiguity is contained in
the various dimensions along which a connector can be characterized and the range of
values that a connector can assume for each dimension. Since there are a finite
number of values that can be assigned for each connector dimension, ambiguity
involved in defining connectors in an architecture is bounded. Family architectures
can be vague about the component interactions and as such can be described using
imprecise connectors, i.e. connectors that identify a range of values for connector
dimensions. Our taxonomy allows architects to choose the concrete connectors
necessary to support interaction among components and to provide the dimensions
along which each specific product can choose a different variation of interaction.
Many extra-functional properties can thus be evaluated based on connectors as their
dimensions of variation are known.

As a solution for the example problem introduced above, the customer service
product family architecture would describe the required component interactions in the
form of an event connector that allows variations along dimensions shown in Figure

2. It then becomes possible to describe both forms of required interactions - online
transactions and batch updates - based on the event dimensions of notification and
synchronicity. It is possible to describe the distribution profile of the interactions
using the distributor dimensions delivery and addressing.

We are currently developing an infrastructure for using and experimenting with
connectors for implicit invocation, real time communication and parallel execution.
This infrastructure builds upon our previous work with event connectors and adaptors
[22].

4 Four-Way Refinement and Evolution

Having discussed an approach to exploiting connectors in modeling family
architectures and instantiating them into product architectures, we now discuss how to

Event

Cardinality

Delivery

Synchronicity

Notification

Causality

Mode

Producers
Observers
Event patterns

Best effort
Exactly once
At most once
At least once

Synchronous
Asynchronous
Time out synchronous

Polled
Publish/subscribe
Central update
Queued dispatch

Absolute
Relative

Page faults
Interrupts
Traps

Signals
GUI input/output
Triggers

Hardware

Software

Priority
Outgoing
Incoming

Distributor

Naming

Delivery

Semantics

Mechanism

Structure based

Attribute based

Hierarchical
Flat

Best effort
Exactly once
At most once
At least once

Unicast
Multicast
Broadcast

Routing

Membership

Path
Static
Cached
Dynamic

Bounded
Ad-hoc

Figure 2. An excerpt from the connector taxonomy showing (from left to right)
types, dimensions, subdimensions, and values.

refine the resulting product architectures into individual product designs. A product
architecture constitutes an effective milestone [25] for any project since it can be
analyzed and simulated to ensure the presence (or absence) of properties of interest.
Nevertheless, it is still a difficult task to refine those architectural models into designs
and actual implementations.

Refinement involves the creation of lower-level design models (and ultimately
source code) and their continuous validation to ensure consistency. Refinement is
difficult and it often has to be done manually. This, however, implies that defects may
be introduced while refining the product design from its architecture. Thus, we are
faced with a major problem: we create the family and product architectures with the
understanding that they describe certain desirable properties the end system should
exhibit; at the same time, if consistent refinement and evolution cannot be ensured,
then there is no guarantee that the final product will indeed exhibit those properties.
In other words, inconsistent refinement invalidates the purpose and utility of the
family and the product architecture. Meaningful architectural modeling must therefore
ensure faithful refinement and evolution. This section will discuss an approach to
improve the integrity of product models through the automation of refinement.

Automation during Refinement

The traditional way of modeling family architectures involves instantiating a
family architecture into a product architecture, followed by refining that product
architecture into a product design (Figure 3a – white area). This process may seem
simpler in comparison to our proposed approach (Figure 3b – gray area) of using a
family design, mainly because our approach additionally requires (1) modeling of a
family design and (2) knowledge of how to relate it to the product architecture.
However, we believe that these two additional activities ultimately simplify the
overall refinement process. Using the traditional “family architecture to product
architecture to product design” approach requires an instantiation from family
architecture to product architecture and a refinement from the product architecture to
a corresponding product design. The instantiation is relatively easy to do compared to
the refinement activity, which is complicated by the lack of automation support. Even

hard

medium

Family Architecture Product Architecture

Product Design

easy

hard

Family Architecture Product Architecture

Family Design Product Design

easy

medium

easy

hard

done once done multiple times

a)

b)

Figure 3. Two refinement approaches

if the refinement could be automated, we would still be faced with the possibility of
mismatch introduction at a later stage, e.g., when either the design or architecture is
altered and those modifications are not properly propagated throughout the family.

Using a family design requires one additional instantiation activity – from a
family design to a product design – which is again relatively straightforward.
However, by replacing some (hard) refinement activities with (easy) instantiation
activities, we achieve the added benefit of having to do less refinement, which, in
turn, significantly simplifies doing product designs. Furthermore, we get the benefits
of design reuse which complements architectural reuse (enabled through the use of
family architecture). On the downside, arriving at a family design is not trivial or
easily automated. The major advantage in using a family design is that we need to
create it only once for each product family. Thus, once the family design is in place,
each additional product can be architected and designed much more easily (because of
having simplified the refinement of product architectures). On the other hand, without
a family design we may avoid the hard initial task of creating and instantiating it, but
the task of refining product architecture would be harder. It is not difficult to see the
return on investment of doing a one-time difficult task that simplifies a later repetitive
task as opposed to avoiding that hard initial task but complicating the repetitive one.
Therefore, family design allows us to shift parts of the hard repetitive tasks from
product architecture refinement to family architecture refinement.

An added benefit of standard family designs is that they can be used to realize
different species of the same connector type. For example, design patterns for central
dispatch, publish-subscribe and queued dispatch events can be described in the form
of family designs that realize the event connector, and are eventually instantiated in
the product designs, based on the specific mode of interaction required. Additional
design patterns can describe the other dimensions. This technique requires integration
of design patterns in the family design for specific values of the different connector
dimensions into a single software product design.

Continuing our previous example, the use of events in the customer support
product family architecture as the means of component interaction would leave a lot
of flexibility in the design of individual products; the family architecture can support
a large number of variations in each product. The product architecture can be used to
instantiate an event connector by selecting the dimensions of each connector instance
in the family architecture. This is an easy step, as it would involve looking up the
taxonomy of connectors and making choices for the dimensions of a connector.
Family designs can then provide standard refinements in the form of design patterns
of event-based interaction for different platforms and middleware environments.
Finally, the product design would select specific design patterns for the target
environment and desired product properties of the system.

5 Example: Going from Family Architecture to Product Design

Figure 4 depicts a simple example on how to use generic connectors and family
design concepts to generate a product design from a family architecture definition.

The figure depicts a simple accounting family architecture (upper left) that supports
access to accounting information via an event-based connector. This particular family
architecture allows two types of interfaces, one for ATM machines and one for
terminal consoles, but only one at a time. The family design (lower left) depicts
possible realizations of above architectural elements. Note that there are realizations
for both architectural components and connectors. Furthermore, we need to be able to
deal with incomplete family design specifications including missing links (e.g.,
missing glue code) and missing realizations for some architectural elements. For
instance, Flat File is a realization of Account; however, it does not work together with
any realization of Event Bus (publish-subscribe, control dispatch, or batch update).

In our example, we decided to instantiate a product architecture that consists of
Account, Event Bus, and Console Manager (upper right). Using this product
architecture as a reference and the family design as a resource database, we can now
design and build the product using a predefined set of realizations. For instance, we
could use the Console PC Mgr and combine it with either a Publish-Subscribe bus
and a Database, or a Batch-Update bus and a Flat File. When we specified the
product architecture, we also specified some attributes the architectural connectors
should demonstrate. For instance, we pre-selected the Event bus to be of the Batch
Update style. With this additional information, we can now automatically select a
possible product design from the family design that would be compatible with the
product architecture (lower right). The product architecture supplies information on
what to design, while the family design provides a details on how to design a product.

6 Conclusions

This paper identified and addressed two significant challenges in product family
development: modeling family architectures via generic connectors and supporting
automatic architectural refinement via family designs. Our approach involves the use

Account Event Bus
ATM

Manager

Console
Manager

or

Database

Flat File
Contral

Dispatch

Batch
Update

ATM
PC Mgr

Console
PC Mgr

Account
Event Bus

Console
Manager

Notification=Batch Update
Family Architecture Product Architecture

Family Design Product Design

Flat File

Batch
Update

Console
PC Mgr

Publish
Subscribe

HOW
instantiation

WHAT
selection

Figure 4. Example of instantiation, refinement and traceability links

of a taxonomy of connectors to model the bounded ambiguity in family architectures.
We do not claim that connectors are more important than components for enabling
family architectural descriptions; however we have found that, in some respect,
connectors are significantly more flexible and reusable than components.

To enable automatic refinement and evolution, we introduced the concept of
family design. Family designs provide a set of realizations of architectural
components and connectors (e.g., in the form of design patterns). They simplify
refinement by providing an additional path from a family architecture to a product
design. We believe that combining a product architecture and a family design
provides simplified and more precise refinement.

To date we have developed a suite of tools that allows automated mapping
between architecture and design as well as their consistency checking. We have also
studied the role of complex connectors in simplifying component integration and
generating designs [1] and implementations [26]. The techniques used in this paper
extend our previous work in the area of product line architectures [24]. This work is
still in progress and it will evolve in several directions, including refining of our
taxonomy of connectors, providing automated support for creating family designs,
and resolving mismatches among architectural and design views at the level of a
product family.

Acknowledgements

This research is sponsored by the Defense Advanced Research Projects Agency,
and Air Force Research Laboratory, Air Force Materiel Command, USAF, under
agreement numbers F30602-94-C-0195 and F30602-99-C-0174, as well as by the
Affiliates of the USC Center for Software Engineering. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency, Air Force Research Laboratory or the
U.S. Government.

�
�����

��������
��������
����������
������������	������	� who provided useful
feedback while discussing the topics presented in this paper.

References
1. M. Abi-Antoun and N. Medvidovic. Enabling the Refinement of a Software Architecture

into a Design. In Proceedings of The Second International Conference on The Unified
Modeling Language (UML’99), Fort Collins, CO, October 1999.

2. ARES. Proceedings of the International Workshop on Development and Evolution of
Software Architectures for Product Families, Las Navas del Marqués, Ávila, Spain,
November 1996. http://hpv17.infosys.tuwien.ac.at/Projects/ARES/public/AWS/

3. ARES II. F. van der Linden, editor. Proceedings of the Second International Workshop on
Development and Evolution of Software Architectures for Product Families, Las Palmas
de Gran Canaria, Spain, February 1998.

4. ARES III. The Third International Workshop on Development and Evolution of Software
Architectures for Product Families, Las Palmas de Gran Canaria, Spain, February 2000.

5. D. Batory, L. Coglianese, S. Shafer, and W. Tracz. The ADAGE Avionics Reference
Architecture. In Proceedings of AIAA Computing in Aerospace 10, San Antonio, 1995.

6. G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language User Guide.
Addison-Wesley, 1998.

7. A. Egyed and N. Medvidovic. A Formal Approach to Heterogeneous Software Modeling.
Alexander Egyed and Nenad Medvidovic, to appear in Proceedings of Foundational
Aspects of Software Engineering, Berlin, Germany, 2000.

8. R. Hayes-Roth and W. Tracz. DSSA Tool Requirements for Key Process Functions.
ADAGE Technical Report, ADAGE-IBM-93-13B, October 1994.

9. N. Medvidovic and R.N. Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages. Accepted for publication in IEEE
Transactions on Software Engineering, 2000. (To appear)

10. D. E. Perry. Software Architecture and its Relevance to Software Engineering, Invited
Talk. Second International Conference on Coordination Models and Languages (COORD
‘97), Berlin, Germany, September 1997.

11. D. E. Perry. Generic Descriptions for Product Line Architectures. In Proceedings of the
Second International Workshop on Development and Evolution of Software Architectures
for Product Families (ARES II), Las Palmas de Gran Canaria, Spain, February 1998.

12. The First Software Product Line Conference, August 28-31, 2000, Denver, Colorado,
USA. http://www.sei.cmu.edu/plp/conf/SPLC.html

13. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Software
Systems with Reusable Components. ACM Transactions on Software Engineering and
Methodology, 1(4), October 1992, pp. 355-398.

14. The Open Group, http://www.opengroup.org
15. Microsoft Corp. http://www.microsoft.com/com
16. Object Management Group, http://www.omg.org
17. Sun Microsystems. http://java.sun.com/j2ee
18. N. Mehta, N. Medvidovic and S. Phadke, Towards a Taxonomy of Software Connectors,

Technical Report, Center for Software Engineering, University of Southern California,
USC-CSE-99-529, 1999.

19. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline,
Prentice-Hall, Upper Saddle River, NJ, 1996.

20. N. Roodyn and W. Emmerich. An Architecural Style for Multiple Real-Time Data Feeds.
21st International Conference on Software Engineering (ICSE ’99), Los Angeles, CA,
May 1999.

21. A. Carzaniga, E. Di Nitto, D. S. Rosenbloom and A. L. Wolf. Issues in Supporting Event-
based Architectural Styles. 3rd International Software Architecture Workshop (ISAW3),
Orlando FL, 1998.

22. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead and J. E. Robbins. A
component- and message-based architectural style for GUI software. IEEE Transactions
on Software Engineering, 1996, 22(6), pp. 390-406.

23. E. Di Nitto and D. Rosenbloom. Exploiting ADLs to Specify Architectural Styles Induced
by Middleware Infrastructures. 21st International Conference on Software Engineering
(ICSE ’99), Los Angeles, CA, May 1999.

24. N. Medvidovic and R. N. Taylor. Exploiting architectural style to develop a family of
applications. In IEE Proceedings Software Engineering, Vol. 144 No 5-6, October 1997.

25. B. Boehm, Anchoring the Software Process, IEEE Software, July 1996.
26. N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Language and Environment for

Architecture-Based Software Development and Evolution. In Proceedings of the 21st
International Conference on Software Engineering (ICSE'99), pp. 44-53, Los Angeles,
CA, May 16-22, 1999.

